2,218 research outputs found

    TARGET MARKETS FOR RETAIL OUTLETS OF LANDSCAPE PLANTS

    Get PDF
    Merchandisers of landscape plants can increase the effectiveness of their marketing strategies by identifying target markets. Using a full information maximum likelihood tobit procedure on a system of three equations, target markets for different types of retail outlets in Georgia were identified. The results lend support and empirical evidence to the premise that different retail outlet types have different target markets and thus should develop different market strategies. The estimated target markets are identified and possible marketing strategies suitable for each type of retail outlet are suggested.Crop Production/Industries,

    Shuttle/spacelab MMAP/electromagnetic environment experiment phase B definition study

    Get PDF
    Progress made during the first five months of the Phase B definition study for the MMAP/Electromagnetic Environment Experiment (EEE) was described. An antenna/receiver assembly has been defined and sized for stowing in a three pallet bay area in the shuttle. Six scanning modes for the assembly are analyzed and footprints for various antenna sizes are plotted. Mission profiles have been outlined for a 400 km height, 57 deg inclination angle, circular orbit. Viewing time over 7 geographical areas are listed. Shuttle interfaces have been studied to determine what configuration the antenna assembly must have to be shared with other experiments of the Microwave Multi-Applications Payload (MMAP) and to be stowed in the shuttle bay. Other results reported include a frequency plan, a proposed antenna subsystem design, a proposed receiver design, preliminary outlines of the experiment controls and an analysis of on-board and ground data processing schemes

    Chaos properties and localization in Lorentz lattice gases

    Full text link
    The thermodynamic formalism of Ruelle, Sinai, and Bowen, in which chaotic properties of dynamical systems are expressed in terms of a free energy-type function - called the topological pressure - is applied to a Lorentz Lattice Gas, as typical for diffusive systems with static disorder. In the limit of large system sizes, the mechanism and effects of localization on large clusters of scatterers in the calculation of the topological pressure are elucidated and supported by strong numerical evidence. Moreover it clarifies and illustrates a previous theoretical analysis [Appert et al. J. Stat. Phys. 87, chao-dyn/9607019] of this localization phenomenon.Comment: 32 pages, 19 Postscript figures, submitted to PR

    The Kolmogorov-Sinai Entropy for Dilute Gases in Equilibrium

    Full text link
    We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic behavior of the gas. We compute h_KS/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h_KS/N = a\nu[-\ln{\tilde{n}} + b + O(\tilde{n})], where \nu is the single-particle collision frequency and \tilde{n} is the reduced number density of the gas. The theoretical values for the coefficients a and b are compared with the results of computer simulations, with excellent agreement for a, and less than satisfactory agreement for b. Possible reasons for this difference in b are discussed.Comment: 15 pages, 2 figures, submitted to Phys. Rev.

    Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime

    Get PDF
    We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.Comment: 24 pages, 13 figure

    Thermodynamic formalism for the Lorentz gas with open boundaries in dd dimensions

    Full text link
    A Lorentz gas may be defined as a system of fixed dispersing scatterers, with a single light particle moving among these and making specular collisions on encounters with the scatterers. For a dilute Lorentz gas with open boundaries in dd dimensions we relate the thermodynamic formalism to a random flight problem. Using this representation we analytically calculate the central quantity within this formalism, the topological pressure, as a function of system size and a temperature-like parameter \ba. The topological pressure is given as the sum of the topological pressure for the closed system and a diffusion term with a \ba-dependent diffusion coefficient. From the topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller, the topological entropy, and the partial information dimension.Comment: 7 pages, 5 figure

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure

    Velocity Tails for Inelastic Maxwell Models

    Full text link
    We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.Comment: 4 pages, 2 figure
    corecore